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ABSTRACT
Identifying datapoints that substantially differ from normality is
the task of anomaly detection (AD). While AD has gained wide-
spread attention in rich data domains such as images, videos, audio
and text, it has has been studied less frequently in the context of
reinforcement learning (RL). This is due to the additional layer of
complexity that RL introduces through sequential decision mak-
ing. Developing suitable anomaly detectors for RL is of particular
importance in safety-critical scenarios where acting on anomalous
data could result in hazardous situations. In this work, we address
the question of what AD means in the context of RL. We found
that current research trains and evaluates on overly simplistic and
unrealistic scenarios which reduce to classic pattern recognition
tasks. We link AD in RL to various fields in RL such as lifelong RL
and generalization. We discuss their similarities, differences, and
how the fields can benefit from each other. Moreover, we identify
non-stationarity to be one of the key drivers for future research on
AD in RL and make a first step towards a more formal treatment
of the problem by framing it in terms of the recently introduced
block contextual Markov decision process. Finally, we define a list
of practical desiderata for future problems.
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1 INTRODUCTION
In Anomaly Detection (AD), one aims to identify datapoints that
substantially differ from normality. AD is used to detect medical
problems, fraud, production errors andmanymore. Since datapoints
lack annotations of their degree of abnormality, the predominant
approach is to learn a neural network (NN) based scoring function
that models a notion of normality. Typical data sources in AD
include images [34, 36, 43], video [30, 42], audio [29] and text [36].
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Unlike in reinforcement learning (RL), these data sources are static
and do not involve sequential decision making. In RL, an agent tries
to maximize reward by interacting with its environment via trial
and error. It is safe to assume that in realistic scenarios, trained RL
agents will not exclusively act in the environment in which they
were trained. Hence, unforeseen situations may arise such as the
reduction of the braking power of an autonomous vehicle, people
walking on the road, the appearance of a ghost driver, changing
driving behavior of other traffic participants or the introduction of
novel road signs. Since we cannot recreate all possible situations
during training, the mismatch between training and deployment
will be not the exception but the rule for real-world RL systems.
Additionally, by acting in unfamiliar environments, the agent can
also create accumulating anomalous situations through its own
actions causing drastic changes it was not trained to account for. For
example, an agent drives over a shelf because the shelf’s position has
changed, products fall off the shelf, block the way and damage the
agent. Preventing such scenarios can be addressed by AD via early
detection of possibly hazardous situations and is thus indispensable
in safety critical scenarios. Refraining from AD based monitoring
consequently bears far too many risks. However, we noticed a lack
of research in the field of AD in RL. It is dominated by simple and
unrealistic evaluation scenarios and does not fully embrace the
unique challenges that arise due to the RL setting. This is partially
due to the fact that it is less clear how to define and formalize the
objective of AD in RL than for the other domains mentioned above.
In this work, we aim to clarify the problem.

2 STATE OF RESEARCH
In this section we discuss related research and its limitations. More-
over, we outline similar questions and problems in other fields.

2.1 Simple Problems in Disguise
For a sound discussion of the challenges, limitations and open ques-
tion that AD in RL entails, it is essential to review the current state
of the field.
While concurrent work [18] has conceptually highlighted the im-
portance of AD as one of the building blocks needed to enable
safe RL systems, there is very little work that explicitly addresses
anomaly detection in RL in terms of novel algorithms, domains or
evaluation-scenarios. Moreover, we found that most existing works
are rather traditional AD problems in disguise. Despite of claiming
to tackle RL-specific AD problems, the proposed methods simply
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reduce to AD problems from classic Machine-Learning (ML) tasks,
where RLmerely serves as the data source. Additionally, approaches
are usually evaluated on unrealistically simple scenarios.
For example, in [49] the authors aim to detect contaminated ob-
servations in a trajectory collected by an RL agent. Contaminated
observations were constructed using additive Gaussian noise, sim-
ple white-box adversarial perturbations [13] or by replacing a ran-
dom fraction of the observations in a trajectory with observations
from another environment. The anomaly detector is trained on the
observation’s feature vectors (activations from penultimate layer
of the agent’s NN) based on the robust Mahalanobis distance and
operates on a per-observation basis. This is basically the application
of a traditional anomaly detector on a dataset of feature vectors.
Moreover, the assumption that an adversary can directly modify the
observations and propagate gradients through the agent to obtain
high impact adversarial noise is unrealistic.
In [38], the authors use the entropy (measures uncertainty) of
the predicted actions as an anomaly score to detect unencoun-
tered states. This is very akin to the simplest approach to out-of-
distribution detection in classification [19] problems where one
uses the entropy over the predicted classes. The method is trained
on a fixed set of procedurally generated environments and tested
whether it can detect other generated environments. In [37] the
authors flip the observations vertically at test time.
Note that the methods do not account for the sequential nature
of the observations. More importantly, the evaluation scenarios
are artificial, simple and do not reflect realistic scenarios. Noise
is very easy to simulate and, if desired, reliable methods to train
noise robust NNs [10] exist. Detecting observations from deviating
data-sources in the cases above results in visually very different
observations (e.g. objects, colors, texture) which could very likely
be detected using (pretrained) computer vision models. These prob-
lems are very similar to video or image AD.
The point is that these (simple) problems can easily be reduced to clas-
sic pattern recognition rather than representing unique AD tasks for
RL and that the currently studied types of anomalies do not represent
naturally occurring data.
Consequently, we need to look for more sophisticated AD chal-
lenges that embrace the RL setting and align better with real-world
scenarios.

2.2 Related Problems
Having stressed the importance of finding suitable scenarios for AD
in RL we extend our discussion with work that proposes interesting
scenarios and approaches (mostly) without directly dealing with
AD but could potentially benefit the field.
One line of work studies the out-of-distribution generalization
when environment parameters are perturbed. Here the agent should
be able to perform the task (or multiple tasks) in novel but related
environments it has not encountered during training. This is impor-
tant since it is well known that RL algorithms suffer from overfitting
to the training environment [4, 48]. The considered scenarios in-
clude: a dexterous, simulated robotic hand that has to manipulate
significantly smaller cubes [27] or additional objects [9] that it had
not observed previously, the variation of an agent’s limb length
and width at test-time [28] or the modification of observations to
have alternative background images or videos [17, 44].

Maximum entropy RL [9] and Self-Supervised Representation Learn-
ing [17] were shown to be particularly well suited to improve gener-
alization. The former encourages exploration and helps to prevent
premature convergence to sub-optimal policies while the latter
optimizes an auxiliary objective that does not depend on external
labels to construct a smooth and robust latent space that aids gener-
alization. While these works are often only evaluated by changing
the visual appearance of the observations, i.e., changing the MDP’s
state space, which then essentially amounts to facilitating domain
adaption approaches from computer vision, some of these works
also change the agents morphology and mechanics during eval-
uation [24, 28] or directly aim to close the simulation-to-reality
gap. This results in a change to the MDP’s dynamics as well as the
state-space [16].
Whether methods that improve generalization can still detect if the
agent is facing novel and previously unencountered situations or if
these methods deteriorate the detection performance is an intriguing
question that remains to be answered.
Although the evaluation scenarios above are used to analyze the
generalization capabilities of different algorithms, we argue that
this is also a challenging and more realistic setting to evaluate AD
in RL since it is clearly more specific to the RL setting. To the best
of our knowledge, the authors of [7] are the first to make a step in
this direction and coin the problem Out-of-Distribution Dynamics
Detection (OODD). Hence, the adjusted environment dynamics are
interpreted as anomalies that need to be detected within a short
time frame. They propose four different types of anomalies that
can occur: iid noise (apply gaussian noise), sensor shutdown (set
some features to zero), sensor calibration failure (multiply features
by a constant) and sensor drift (increase magnitude of noise over
time). Note how these anomalies are solely based on noise in envi-
ronments with continuous, low-dimensional observations. The first
three types of anomalies are often directly robustified against using
robust RL approaches [9, 33] or simple data augmentations [22]
as they are easy to anticipate and lie in a region where detection
might not even be worthwhile.
On the other hand, sensor drift is a non-stationary anomaly source.
We believe that non-stationarity is one of the key challenges future
AD system should be able to deal with in the context of RL as the
world is (from our point of view) inherently non-stationary.
Related to that is the problem of lifelong (continual) reinforcement
learning [20]. Here the agents needs to learn and adapt in a con-
stantly changing environment and tasks. Hence, there is no clear
separation between training and testing. However, the problem
itself is motivated by non-stationarity where one distinguishes be-
tween active and passive non-stationarity. When the agent can
influence the nature of the non-stationarity through its own behav-
ior (e.g. hallucinating new goals) one speaks of active and else of
passive non-stationarity.
We argue that in order to make progress and to create new challenges,
we need to come up with settings where anomalies are more subtle,
semantically more meaningful and not simple, easy-to-specify aug-
mentations of the state space and/or the transition function. Anomalies
must be sufficiently complex such that they cannot be anticipated
beforehand. Ultimately, the anomaly source itself could be governed
by another RL agent. Inevitably, this will result in less general eval-
uation scenarios as complex anomalies are domain-dependent.
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3 THE GENERALIZATION-DETECTION
DILEMMA

The previous section made it obvious that while generalization in
RL follows a very different agenda than AD, both share a similar
setup at their core.
A typical approach to enhance generalization is to make the agent
invariant to task-irrelevant properties of the environment as they
are assumed to represent a source of distraction for the RL algo-
rithm, e.g. an autonomous car on the highway that does not care
about the changing surroundings (e.g. landscape, city, weather)
through which it travels as it approaches its destination.
In domain randomization one simply trains on enough variations of
the environment [6]. This approach suffers from high sample com-
plexity and relies upon a simulator that can produce a diverse set of
environments. Similar approaches use data augmentations [23, 44],
to artificially create "new" environments. Others [11, 47] use bisim-
ulation [12] metrics where two states are bisimilar if they have
similar long-term behavior, i.e. similar expected rewards and dy-
namics.
We believe that the notion of ignoring everything that is not related
to the task is fine in controllable simulations but might be detrimen-
tal in more safety-critical scenarios such as autonomous driving or
smart factories [32]. The same holds for blindly adapting to novel
situations and effectively making them in-distribution, for example
by optimizing auxiliary-objectives (e.g. rotation-prediction) at test-
time using gradient descent [17]. In safety-critical scenarios, one
typically deals with multiple tasks and safety constraints. Designing
a suitable objective in such complicated scenarios is usually hard if
not infeasible. Specification flaws can lead to pathological situations
where the agent retains its capabilities out-of-distribution yet pursues
the wrong objective [21]. Therefore, ignoring information that is ir-
relevant to a misaligned objective (even if only for a small amount)
poses a safety critical threat. Hence, we identify AD components in RL
systems to be of particular importance in safety critical domains and
advocate for more engagement with the topic in the RL community.
Imagine an autonomous car whose only goal is to drive from 𝑎 to
𝑏 on the highway. It might ignore signs of emerging forest fires
in the surrounding landscape. An AD system on the other hand,
could detect the threat and propagate it to the operator for further
instructions. Finding a suitable response strategy to react to detected
anomalies yields another crucial aspect to consider for future AD sys-
tems in RL, e.g. by switching to a more conservative or specialized
policy or handing over control to a human. In a lifelong learning
scenario, the agent could decide whether to keep adapting or not
based on an anomaly score. Additionally, one should minimize false-
positives to combat alert-fatigue [3] and frequent policy switching.
However, note how there is a thin line between making the agent
robust or invariant to small changes in the environment and the need
to detect anomalies. What is meant by "small changes"? What should
be detected, what can safely be ignored? We conjuncture that it is
best to combine the best of both worlds. The agent should have suf-
ficient generalization capabilities such that it can act sensibly under
the influence of novel dynamics and observations while still being
able to detect and report these situations as anomalous. Domain
knowledge can be used to specify irrelevant factors of variation
("small changes"). The latter is addressed by practitioners through

the use of operational design domain specifications to explicitly
define to what extent the agent must be safe to operate, i.e., au-
tonomous driving regardless of the weather or traffic. In the future,
less invasive approaches are desirable.
A common misconception is to assume that all anomalies are dan-
gerous. This decision depends on the agent’s notion of safety. How-
ever, without the ability to detect anomalies, this decision cannot
be made.

4 A MORE FORMAL VIEW
The previous discussion lacks a formal description of the task of AD
in RL. In this section, we aim to connect the problem with a variant
of an MDP that incorporates the aspect of slowly drifting dynam-
ics, the block contextual Markov decision process (BC-MDP) [40].
Compared to other formalism such as the hidden parameter block
MDP [47] or the dynamic parameter MDP [45] it does not rely on an
episodic setting. In particular, dynamics are allowed change within
episodes and not only across episodes. In safety-critical scenarios
we must be able to detect changes in a matter of timesteps and not
episodes (if any).
The following definition of a BC-MDP is taken from [40].
A BC-MDP is defined by a tuple (𝒞,𝒮,𝒜,ℳ) where 𝒞 is the con-
text space, 𝒮 is the state space, 𝒜 is the action space and ℳ is
a function which maps a context 𝑐 ∈ 𝒞 to MDP parameters and
observation space ℳ(𝑐) = {𝑇𝑐

, 𝑆
𝑐}.

In short, state space and transition dynamics are governed by con-
text 𝑐 .
For the AD setting, let 𝑝(𝑐) be the density of some 𝑐 ∈ 𝒞 and let
𝐶𝑛𝑜𝑟𝑚𝑎𝑙 ,𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 ⊂ 𝒞. Further, we assume that

𝐶𝑛𝑜𝑟𝑚𝑎𝑙 ∩𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = ∅ ∧ 𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 = 𝒞 \𝐶𝑛𝑜𝑟𝑚𝑎𝑙

Then the goal is to find a suitable 𝑝 such that

𝑝(𝑐) > 𝑝(𝑐 ′) ∀ (𝑐, 𝑐 ′) ∈ 𝐶𝑛𝑜𝑟𝑚𝑎𝑙 ×𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

In practice we are usually restricted to some 𝐶 ′
𝑛𝑜𝑟𝑚𝑎𝑙 ⊆ 𝐶𝑛𝑜𝑟𝑚𝑎𝑙

where the context is not directly observable and needs to be inferred
(under the assumption of identifiability). That is, we do not know
the context space and are given ℳ(𝑐) but not 𝑐 . Hence, we frame
the problem of AD in RL as detecting whether the agent is acting
in a familiar or unfamiliar context1.

5 PRACTICAL DESIDERATA FOR FUTURE
PROBLEMS

We now define various desiderata for future AD problems we be-
lieve to be both realistic and practical.
I. Sufficient data to model normality is available
Access to enough data to model normality is crucial and a com-
mon assumption in AD problems. One assumes that normal data
is cheap and easy to acquire whereas retrieving anomalous data is
scarce, expensive to obtain, impractical and in most cases simply
impossible. Therefore we cannot expect to get an exhaustive set of
anomalous data. This is the very reason we cannot rely upon su-
pervised learning (SL). In the context of RL this could mean having
access to a few training tracks (or levels) where one can control for
1For simplicity we do not include the case where𝐶 ′

𝑛𝑜𝑟𝑚𝑎𝑙 is contaminated by a small
fraction of anomalous contexts but the above could easily be extended to do so.
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normality, e.g. not having humans cross the street during training.
II. Anomalies are semantically rooted in the environment
We have already discussed this point in depth in the previous sec-
tions. We need to move away from simple pattern recognition prob-
lems towards studying semantically meaningful anomaly sources
that are deeply rooted in the environment under inspection and ex-
hibit non-stationarity. E.g. the occasional presence of road-workers
or unseen traffic signs at test time. A similar trend can be observed
in computer vision [8]. Moreover, one might also introduce anom-
alies into the non-stationarity itself, i.e., by varying the degree of
non-stationarity.
III. Absence of rewards during deployment
This point is akin to the problem of scalable supervision [1]. In real-
world scenarios it is often infeasible to evaluate (compute reward)
the agent’s actions, for example when it requires human super-
vision or ties up valuable resources such as external monitoring
systems. Therefore the absence of reward during deployment is
more realistic. When one is only interested in the deterioration in
performance with respect to the reward and the reward is available
at test-time, statistically comparing rewards from train and test-
time [14] yields good results. We exclude this setting.
IV. Simultaneous or post-hoc,
whitebox or blackbox AD-training
Regarding the training of dedicated AD modules we are faced with
several choices that arise due to the RL setting: (i) Train the detector
in conjunction with the agent. The challenge is to account for the
agent’s learning dynamics. Note that it is possible to use the inher-
ent properties such as the uncertainty over actions and a dedicated
AD might not be needed. (ii) Training the detector post-hoc. Here
we need generate additional rollouts with the trained agents in
the train environment. The challenge is to determine how many
rollouts are needed to get enough data to model normality and how
to do this efficiently. The post-hoc method introduces a source of
redundancy and increases sample complexity which can be prob-
lematic when rollouts are expensive. However, it might alleviate
the problem of having to deal with the learning dynamics of the
agent. (iii) Blackbox training. In this setting one can only observe
the data emitted by the agent, i.e. states, actions, and next states. In
particular we do not have access to any internal states such as the
activations of the agent’s NN. For example, a robot manufacturer
may choose not to allow access to the NN as this would give away
their unique selling point. (iv) Whitebox training. As opposed to
(iii), here we have access to all parts (e.g. its activations) of the agent
and are also allowed to add additional training phases and objec-
tives, e.g. to add auxiliary losses to improve detection performance.
V. Minimize false positives/negatives and detection lag
We should aim for a low false positive rate to ensure regulated and
practicable operation and combat alert fatigue. Minimizing false
negatives ensures that we do not overlook anomalies. Finding the
right balance is a key challenge. Moreover, it is important to quickly
detect anomalous situations from as few samples or interactions as
possible, i.e. we should minimize the detection lag.
VI. Design a suitable response strategy
Assuming we have a good anomaly detector, the next question that
arises is how we handle situations that are flagged as anomalous
(ideas discussed in Section 3). This question is presumably very
domain depended and bears its own challenges and can also be

studied in isolation. Nevertheless, when deploying agents in the
real world this question is indispensable.

6 FUTURE APPROACHES
We will now briefly outline some possible solutions that we believe
should be further explored in the future.
One obvious paths forward is to study how and to what extend
exploration approaches can be re-purposed at deployment to dis-
cover anomalous states (or situations). One could for example use
the entropy of random state-features [39], the distillation error
when regressing the features of another random network [5], the
uncertainty over intermediate actions from an inverse curiosity
module [31] or density based pseudo counts [50]. However these
methods only explore the consequences of short-term decisions.
Model based RL (MBRL) tries to explicitly construct a model of
the components of the MDP. One could use these models to check
whether the received observations and transitions align with the
learned model of the world [15], e.g. by comparing the predictions
with the actual outcome. Additionally, with the access to anoma-
lous situations one could try to hallucinate [2] novel anomalous
situations using the agent’s world model. Yet, MBRL approaches
are still very brittle and hard to optimize.
Another promising direction is to directly infer normality contexts.
In computer vision, the idea of learning representations using self-
supervised learning [41, 43] without external supervision and apply-
ing AD on these representations has recently gained traction. One
could equip the agent with similar representation learning capabili-
ties [26] to infer a sensible space of context representations during
training. From there on, the space of normal contexts can be made
more compact [34, 35] in a post-hoc fashion such that anomalous
contexts will be placed farther from the center in representation
space. Repurposing approaches that deal with concept-drift and
concept-shift in time-series could be another fruitful avenue. Here
the challenge is to incorporate the decision making component.
Lastly, by inferring the environment’s causal structure [25, 46] we
might gain more insights into what caused the anomaly and use it
to make AD more explainable.

7 CONCLUSION
In this paper we discussed the meaning of anomaly detection in the
context of RL and identified that current approaches and evaluation
scenarios are insufficiently realistic. We linked the problem to vari-
ous other topics in RL such as lifelong learning and generalization
and gave concrete instructions on how to design more realistic
scenarios in the future. Additionally we made first steps towards
the formalization of the problem and discussed various ideas on
how future work could approach the problem. AD in multi agent
RL is another frontier which adds another dimension of complexity.
Anomalies may arise in the communication between agents, in their
ability to cooperate or through the introduction of adversaries.
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